बिना प्रसरण किए और सारणिकों के गुणधर्मो का प्रयोग करके सिद्ध कीजिए।
$\left|\begin{array}{lll}x & a & x+a \\ y & b & y+b \\ z & c & z+c\end{array}\right|=0$
$\left|\begin{array}{ccc}x & a & x+a \\ y & b & y+b \\ z & c & z+c\end{array}\right|=\left|\begin{array}{ccc}x & a & x \\ y & b & y \\ z & c & z\end{array}\right|+\left|\begin{array}{ccc}x & a & a \\ y & b & b \\ z & c & c\end{array}\right|$
Clearly, the two determinants have two identical columns. Thus,
$=0+0=0$
यदि ${a^2} + {b^2} + {c^2} = - 2$ तथा $f(x) = \left| {\begin{array}{*{20}{c}}{1 + {a^2}x}&{(1 + {b^2})x}&{(1 + {c^2})x}\\{(1 + {a^2})x}&{1 + {b^2}x}&{(1 + {c^2})x}\\{(1 + {a^2})x}&{(1 + {b^2})x}&{1 + {c^2}x}\end{array}} \right|$ तो बहुपद $f(x)$ की घात होगी
यदि $\omega $ इकाई का एक घनमूल हो, तो $\left| {\begin{array}{*{20}{c}}1&\omega &{{\omega ^2}}\\\omega &{{\omega ^2}}&1\\{{\omega ^2}}&1&\omega \end{array}} \right|$=
यदि $a + b + c = 0$, तो समीकरण $\left| {\,\begin{array}{*{20}{c}}{a - x}&c&b\\c&{b - x}&a\\b&a&{c - x}\end{array}\,} \right| = 0$ के मूल हैं
माना कि $P=\left[\begin{array}{ccc}1 & 0 & 0 \\ 4 & 1 & 0 \\ 16 & 4 & 1\end{array}\right]$ और $I$ तीन कोटि (order $3$) का तत्समक आव्यूह (identity matrix) है। यदि $Q=\left[q_{i j}\right]$ एक आव्यूह इस प्रकार है कि $P^{50}-Q=I$ है, तब $\frac{q_{31}+q_{32}}{q_{21}}$ का मान है
दर्शाइए कि $\left|\begin{array}{ccc}1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c\end{array}\right|=a b c\left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=a b c+b c+c a+a b$